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Abstract. The hydrogen atom is extended by deforming the loop algebraL(sl(2)), which is
shown to be the symmetrical algebra of the hydrogen atom, to the case with YangianY (sl(2)).
A realization ofY (sl(2)) is proposed. Using this YangianY (sl(2)), the energy spectrum of the
extended hydrogen atom is calculated.

Recently, considerable attention has been drawn to the Yangian in mathematics and physics.
This quantum algebra was first introduced by Drinfeld [1]. Many new developments on
Yangian symmetry in physical models have been reported, such as long-range interaction
models [2], the one-dimensional Hubbard model [3], the two-dimensional sigma model [4],
the two-dimensional chiral model with or without topological terms [5] and the Heisenberg
model [6]. In order to explore the significance of the Yangian, it becomes more important
to study whether simple physics systems have the Yangian and to find these systems and
corresponding Yangian structures.

In this paper, an extended hydrogen atom (EHA) withY (sl(2)) structure will be proposed
from the point of view of quantum mechanics. It is well known that hydrogen atom possesses
the dynamical groupSO(4, 2) [7]. However, theSO(4) group is looked upon as the
conservation symmetry of the hydrogen atom [8]. Generators ofSO(4) are realized in terms
of the angular momentum operatorL and the so-called Runge–Lenz vectorR for the fixed
energy level. If one just consideredL andR, they are not closed to construct the algebra
so(4). However, we find thatL andR obey the commutation relation of the loop algebra
L(sl(2)) (more precisely, the subalgebra ofL(sl(2)), which is just the corresponding classical
algebra ofY (sl(2)) in the limit of the quantum deformation parameter tending to zero [6].
Therefore, it is interesting to study the hydrogen atom when it is extended to the case that the
above-mentioned loop algebra is quantized. This can be achieved by deforming the angular
momentum and Runge–Lenz vector directly. In this paper, the deformed angular momentum
and Runge–Lenz vector will be constructed. Correspondingly, through deforming the so-called
Pauli equation [8], the Hamiltonian of the EHA will be determined. Its energy spectrum will
also be calculated.

It is well known that the Hamiltonian of the usual hydrogen atom reads

H0 = p2

2µ
− e2

|r| (1)
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whereµ ande stand for the mass and electric charge of the electron, respectively. It has been
pointed out [7] that the angular momentumL and Runge–Lenz vector

R = 1

2µe2
(p× L− L× p)− r

r
(2)

are conserved quantities. They commute with the Hamiltonian (1). Since

[R3, R±] = ±−2H0

µe4
L± [R+, R−] = 4H0

µe4
L3 (3)

whereR± = R1 + iR2 we see that the commutation relation of the Runge–Lenz vector is not
closed due to the HamiltonianH0 appearing on the right-hand side of (3). As we have pointed
out,L andR cannot be looked upon as the generators ofSO(4) precisely.

However, after deriving them directly, we find that the angular momentumL and
Runge–Lenz vectorR satisfy the following commutation relations

[L3, L±] = ±L± [L+, L−] = 2L3

[L3, R±] = [R3, L±] = ±R± [L±, R∓] = 2R3 (4)

[L3, R3] = [L±, R±] = 0

in whichL± = L1 + iL2 and

[R3, [R+, R−]] = 0 [R±, [R3, R±]] = 0

2[R3, [R3, R±]] ± [R±, [R±, R∓]] = 0. (5)

This means thatL andR form a subalgebra of the loop algebraL(sl(2)), i.e. the classical
limitation of Y (sl(2)). It is interesting to ‘quantize’ the hydrogen atom so that theL(sl(2))
subalgebra determined by (4) and (5) become the YangianY (sl(2)).

According to Drinfeld [1], the YangianY (sl(2)) is generated by the generators{I±, I3}
and{J±, J3} with the commutation relation as follows

[I3, I±] = ±I± [I+, I−] = 2I3
[I3, J±] = [J3, I±] = ±J± [I±, J∓] = ±2J3 (6)

[I3, J3] = [I±, J±] = 0

and

[J3, [J+, J−]] = α2

4
I3(J−I+ − I−J+)

[J±, [J3, J±]] = α2

4
I±(J±I3− I±J3) (7)

2[J3, [J3, J±]] ± [J±, [J±, J∓]] = α2

4
{2I3(J±I3− I±J3) + I±(I−J+ − J−I+)}

whereα is the quantum deformation parameter. In order to ‘quantize’ the hydrogen atom,
we must deform the angular momentum and Runge–Lenz vector so that they obey the above
communication relations (6) and (7). We denote them asLY andRY , which are called the
Yangian angular momentum and the Yangian Runge–Lenz vector, respectively.

From the commutation relations (6), we can directly assign

LY3 = L3 LY± = L± = L1± iL2. (8)

In other words, the angular momentum remains unchanged in the deformation. Since the usual
Runge–Lenz vector is the limitation of the Yangian Runge–Lenz vector when the quantum
deformation parameter reduces to zero and equations (6) show that the communication relations
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of J3 andJ± with I3 andI± are similar to those ofI3 andI± itself, it is believable that the
Yangian Runge–Lenz vector should have the form

RY = R + βQ (9)

in which β is a parameter that should vanish when the quantum deformation parameterα

reduces to zero andQ is a vector operator to be found. Through analysing equations (6) and
(7), we find that the generators{Q3,Q±} can be chosen as

Q3 = 1√
H0

[L2, R3] = 1

2
√
H0
(L+R− − R+L−)

Q± = 1√
H0

[L2, R±] = ± 1√
H0
(L3R± − R3L±). (10)

From (9) and (10), the Yangian Runge–Lenz vector can be realized as follows:

RY = R + β
1√
H0

[L2,R]. (11)

It can be verified that our Yangian angular momentumLY and Yangian Runge–Lenz vector
RY satisfy

[LY3 , L
Y
±] = ±LY± [LY+ , L

Y
−] = 2LY3

[LY3 , R
Y
±] = [RY3 , L

Y
±] = ±RY± [LY±, R

Y
∓] = ±2RY3 (12)

[LY3 , R
Y
3 ] = [LY±, R

Y
±] = 0

and

[RY3 , [R
Y
+ , R

Y
−]] = 8β2

µe4
LY3 (R

Y
−L

Y
+ − LY−RY+ )

[RY±, [R
Y
3 , R

Y
±]] = 8β2

µe4
LY±(R

Y
±L

Y
3 − LY±RY3 ) (13)

2[RY3 , [R
Y
3 , R

Y
±]] ± [RY±, [R

Y
±, R

Y
∓]] = 8β2

µe4
{2LY3 (RY±LY3 − LY±RY3 ) +LY±(L

Y
−R

Y
+ − RY−LY+ )}.

We see that equations (12) and (13) are just the commutation relations ofY (sl(2))with quantum
deformation parameterα = 32β2/µe4. Therefore, our Yangian angular momentum and
Yangian Runge–Lenz vector indeed construct the YangianY (sl(2)). It must be pointed out
that the generators (11) are different from the YangianY (sl(2)) realization in [9]. Equations (8)
and (11) give a new realization ofY (sl(2)).

Now, let us deform the hydrogen atom (1). It is well known that the usual angular
momentum and Runge–Lenz vector obey the Pauli equation,

R2 = 2H0

µe4
(L2 + 1) + 1. (14)

Using the Pauli equation, the energy spectrum of the hydrogen atom can be determined
algebraically [7]. The hydrogen atom was deformed by deforming Lie algebra SO(4) to
the quantum algebraSOq(4) case in terms of deforming the Pauli equation [10]. Following
this line, one can obtain an EHA with YangianY (sl(2)) structure. We have determined the
Yangian angular momentum and Yangian Runge–Lenz vector as (8) and (11), respectively.
Naturally, the Pauli equation (14) can be deformed in the form

RY2 = 2H

µe4
(LY2 + 1) + 1 (15)
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whereH stands for the Hamiltonian of the EHA. Substituting (8) and (11) into (15), through
tedious calculations, we have

H = p2

2µ
− e2

|r| − 4β2

(
L2 + 1 +

L2

L2 + 1
+
L2 + 1

R2 − 1

)
. (16)

In (16), the Hamiltonian of the EHA has been expressed in terms of the usual angular
momentum and Runge–Lenz vector to calculate the energy spectrum of the EHA conveniently.
From (16), we see that the HamiltonianH reduces to the Hamiltonian (1) when the quantum
parameterβ vanishes. The extension changes the Coulomb potential to a complicated
expression, in which the extended potential depends on the usual angular momentum and
the Runge–Lenz vector respectively. It must be pointed out that there is no operator order
problem in equation (16) sinceL2 commuted withR2, which can be deduced from the Pauli
equation (14) directly.

Because the angular momentum is the conservative quantity of the usual hydrogen atom
(1), we can show that it is also conservative for the EHA (16). In fact, it is due to the Pauli
equation (14) that the angular momentum is commutative withR2. This conclusion is apparent.
On the other hand,R2 is also the conservative quantity of the EHA (16). Since

RY2 = R2 − 4β2

(
H−1

0 R2 − 2L2

µe4
−H−1

0 R2L2

)
we have

[RY2,R2] = [RY2,L2] = [RY2, H0] = 0. (17)

Therefore, we can conclude thatRY2 is commutative with the Hamiltonian of the EHA (16),
i.e. it is another conservative quantity. From the Hamiltonian (16), we see that the Hamiltonian
of the usual hydrogen atom (1) may also be regarded as being conservative for the EHA.

The energy spectrum of the EHA can be derived algebraically. As for the usual hydrogen
atom, it is determined from the deformed Pauli equation (15) according to our realization (8)
and (11). We prefer to obtain it in terms of the eigenstate of the usual hydrogen atom. This is
due to the fact that the Hamiltonian of the EHA (16), the angular momentum operatorL2 and
Lz, and the Hamiltonian of the usual hydrogen atom (1) are commutative with each other. It
is well known that the Hilbert space of the usual atom is given by the wavefunction

|nlm〉 = Rnl(r)Ylm(θ, φ)
where

Rnl(r) = −
{(

2

na0

)3
(n− l − 1)!

2n[(n + l)!] 3

}1/2

e−r/na0

(
2r

na0

)l
L2l+1
n+l

(
2r

na0

)
andL2l+1

n+l stands for the associated Laguerre polynomial. Using the Pauli equation (14) and
the Hamiltonian (16), we derive the energy eigenvalue of the EHA as follows:

Enl = −µe
4

2n2
− 4β2

[
l(l + 1) + 1 +

l2 + l

l2 + l + 1
− n2

]
(18)

n = 1, 2, 3, . . . l = 0, 1, 2, . . . , n− 1.

It is easy to see that the energy spectrum of the EHA is determined in terms of the principle
quantum numbern and the angular quantum numberl together. For the above-mentioned
Hilbert space, the degeneration degree of the energy spectrum is 2l + 1. Therefore, our
extension has changed the symmetry of the system in the usual sense. Equation (18) shows
that the deformation adds three terms to the energy spectrum of the usual hydrogen atom,
which is decided by the principle quantum number and angular quantum number. The energy
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spectrum does not deal with the magnetic quantum numberm. This is due to the fact that the
angular momentum is still conservative in the EHA. When the quantum deformation parameter
β vanishes, the energy spectrum of the extended hydrogen atom becomes that of the usual
hydrogen atom exactly.

From (8), we see that the so-called Yangian angular momentum keeps the angular
momentum character in the above-mentioned Hilbert space. Let us consider the properties
of the Yangian Runge–Lenz vector. After tedious calculations, we obtain

〈n′l′m + 1|RY+ |nlm〉 = δnn′δll′
{

2β2

µe4
[2l(l + 1) + 1− n2] +

1

n2

}1/2√
(l −m)(l +m + 1) (19)

and

〈n′l′m− 1|RY−|nlm〉 = δnn′δll′
{

2β2

µe4
[2l(l + 1) + 1− n2] +

1

n2

}1/2√
(l +m)(l −m + 1). (20)

Furthermore, we have

〈nlm|RY3 |n′l′m〉 = δnn′δll′m
{

2β2

µe4
[2l(l + 1) + 1− n2] +

1

n2

}1/2

. (21)

This means that theY (sl(2)) generators realized by (8) and (11) represent the transition within
the states with the same reciprocal quantum numbern and angular quantum numberl. In the
derivation of (19)–(21), we applied the commutation relations of the Yangian Runge–Lenz
vector

[RY+ , R
Y
−] = 4β2

µe4
L3(2L

2 + 1) + 2

(
β2

H0
− 2H0

µe4

)
L3 (22)

and

[RY3 , R
Y
±] = ∓2H0

µe4
L± ± 2β2

µe4
L±(2L2 + 1)± β

2L±
H0

. (23)

Furthermore, we can derive

RY2|nlm〉 =
{
− l

2 + l + 1

n2
− 8β2

µe4
[(l2 + l + 1)2 + l2 + l]

}
|nlm〉. (24)

In this paper, we deform the usual hydrogen atom to the so-called extended hydrogen
atom (EHA). The angular momentum and Runge–Lenz vector that are shown to construct the
subalgebra of the loop algebraL(sl(2)) are extended to the Yangian angular momentum and
Yangian Runge–Lenz vector, which satisfy the commutation relations of the YangianY (sl(2)).
A realization of theY (sl(2)) generators is found. The Hamiltonian of the EHA is determined
by deformation of the Pauli equation. The energy spectrum of the EHA is calculated. The
selection rule and matrix elements of theY (sl(2)) generators for the eigenstates of the usual
atom are also studied.
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